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Abstract

The concern of this work is the 1/3 sub-harmonic resonance response and transition to chaos in the response of

harmonically driven single degree of freedom nonlinear oscillators with a combined static and inertia nonlinearities.

Approximate analytical solutions to the 1/3 sub-harmonic resonance curves are obtained using the harmonic balance (HB)

method and the multiple scales (MMS) perturbation method. Stability analyses of the obtained approximate solutions

were used to determine zones of chaotic behavior in the primary frequency response curve. The obtained analytical results

were verified for selected values of system parameters using computer simulations and with the aid of time histories, phase

planes, Poincare map, FFT and Lyapunov exponents.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The interest of the this work is to study 1/3 subharmonic resonance in the class of nonlinear oscillators with
static and inertia nonlinearities, given by

€uþ d _uþ uþ �1ðu
2 €uþ u _u2Þ þ �2u3 ¼ P cosðOtÞ, (1)

where d, e1, e2, P and O are constant positive parameters.
Examples of physical systems modeled by this oscillator include: a rotating flexible blade, an immersed

beam and parametrically excited structures, e.g. [1–5].
For the immersed beam studied in Refs. [2,4], the parameters e1 and e2 in Eq. (1) depend on the physical

parameters of the system, such as; fluid depth, fluid density, mass ratio and position, and the behavior of the
nonlinear oscillator will change from softening to hardening depending on e1/e2 ratio [1].

It is well known that a harmonically driven single degree of freedom (sdof) oscillator with cubic hardening
static nonlinearity, a subharmonic resonance, of amplitude larger than that of the fundamental response, may
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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get excited for the right system parameters (e.g. forcing amplitude, system damping and initial conditions)
when the forcing frequency O is in the range o/3, where o is the linear oscillator natural frequency.

Stability analysis and numerical simulation studies of sub-harmonic resonances in various types of
harmonically excited Duffing oscillators have shown that chaotic motions are associated with the loss of
stability of a sub- or super-harmonic resonance, i.e. one characteristic precursor to chaotic motions is the
appearance and then loss of stability of a sub- or super-harmonic resonance, e.g. Refs. [6–17].

Studies dealing with approximate analytic-numeric stability and bifurcation analyses of sub-harmonic
resonance and its transition to chaos in sdof nonlinear oscillators have been limited, except in few cases, such
as; first-order approximations statically stable and unstable oscillators with only static nonlinearity [12–17].

These studies have shown that the zone of a chaotic motion in the response, of various types of the classical
Duffing oscillator, is found in a narrow zone just before entering the sub/super harmonic resonance region.

For a more general version of the oscillator considered in the present work, results were obtained for a
cantilever beam when subjected to primary and principal parametric excitations using the method of multiple
scales to determine the steady state responses and their stability. Amplitude and phase modulation are used to
detect chaos and unbounded motions in the instability regions of the periodic solutions [18].

Consequently, analytical approaches have been used to seek a link between stability limits of sub-harmonic
solutions and the onset of chaotic motions through a continuous sequence period doubling bifurcations
[12–15].

The objective of this work is to seek an approximate analytical solution for the subharmonic resonance of
order 1/3 and its stability in the nonlinear oscillator described in Eq. (1). Approximate analytical solutions for
the primary and 1/3 sub-harmonic resonance curves are obtained using harmonic balance (HB) method and
method of multiple scales (MMS). Stability analyses of the obtained approximate solutions are carried out to
predict the regions on the primary resonance curves at which the subharmonic response may lose stability.
Computer simulations using time histories, phase planes, Poincare map, FFT and Lyapunov exponents, were
used to verify theoretical results for selected values of system parameters.

2. Analysis

In order to obtain an approximate solution to the oscillator described in Eq. (1), it is convenient to rewrite
this equation in the form

O2 €uþ Od _uþ uþ �1O2u2 €uþ �1O2u _u2 þ �2u
3 ¼ P cosðT þ fÞ. (2)

Here the phase shift f, has been added such that one can obtain an approximate solution for the primary
response using single term only, i.e. cosine term only. The authors in Refs. [1,2,5] studied the primary steady
state response and bifurcation and transition to chaos of the nonlinear oscillators described in Eq. (2).

2.1. Subharmonic response using harmonic balance method (HBM)

According to the HBM, an approximate solution of the subharmonic response of Eq. (2), takes the form

uðtÞ ¼ A1 cosðTÞ þ A1=3 cosðT=3Þ þ B1=3 sinðT=3Þ. (3)

Substituting Eq. (3) into Eq. (2), and comparing the coefficients of cos(T), sin(T), cos(T/3), sin(T/3), one
obtains the following equations:
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Eqs. (4)–(7), can be reduced to three nonlinear algebraic equations ‘‘by adding the squares of Eqs. (4) and
(5), i.e. by eliminating the phase f’’, and solved numerically for A1, A1/3 and B1/3.

In this paper, the three Equations were solved by using an iterative numerical technique, i.e. by assuming an
initial guess for the three unknowns A1, A1/3 and B1/3, for a given system parameters O, d, e1, e2 and P.

It is worth mentioning that for some points on the response curve, there were some numerical difficulties in
obtaining solution ‘‘divergence’’ for the subharmonic resonance and no convergence was achieved.

Based on results of other researchers [13,19,20], and for different types of oscillators, the value of the A1 in
the assumed solution in Eq. (3), can be obtained from the linear solution of the nonlinear oscillator, i.e.
A1 � ð�9P=8O2Þ, since at the region of interest near Offi3 the value of A1 is almost the same as that of the
linear oscillator, as one can see from Figs. 1–4, regardless the values of e1 and e2 the primary response obtained
using the HBM, is nearly the same as that obtained from A1 ¼ ð�9P=8O2Þ.

In the present work the same approach was adopted to approximate the value of A1, i.e. A1 ¼ ð�9P=8O2Þ.
Accordingly, Eqs. (6) and (7) are re-written in the following form:
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Fig. 1. Primary and subharmonic response. P ¼ 5, d ¼ 0.01, e1 ¼ 0, e2 ¼ 0.1, e ¼ 1: ———— primary response, – � – � – subharmonic

response using HB and MMS, —— linear amplitude, � numerical solution.
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Fig. 2. Primary and subharmonic response. P ¼ 1, d ¼ 0.01, e1 ¼ 0.2, e2 ¼ 0, e ¼ 1: ———— primary response, - � - � - � - subharmonic

response using HB and MMS, —— linear amplitude, � numerical solution.
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Fig. 3. Subharmonic response. P ¼ 10, d ¼ 0.02, e1 ¼ 0.2, e2 ¼ 1, e ¼ 1: ????? subharmonic response using HB, ————

subharmonic response using MMS, – � � – � � linear amplitude, � numerical solution.
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Fig. 4. Subharmonic response. P ¼ 10, d ¼ 0.01, e1 ¼ 0.1, e2 ¼ 0.5, e ¼ 1 ????? subharmonic response using HB, - � - � - � -

subharmonic response using MMS, ——- linear amplitude. For O ¼ 2.95, l1 ¼ 1.721� 10�3, l2 ¼ 0 and l3 ¼ �1.733� 10�3, df ¼ 2.99.
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The solutions for A1/3 and B1/3 were obtained, as mentioned, by an iterative numerical technique, and for a
given system parameters O, d, e1, e2 and P.

2.2. Subharmonic response using method of multiple scales (MMS)

In order to apply the MMS perturbation technique, it is necessary to scale Eq. (2), i.e. by introducing a
small gauge parameter e. Accordingly, Eq. (2), can be written as

€uþ �d _uþ uþ ��1ðu
2 €uþ u _u2Þ þ ��2u

3 ¼ P cosOt, (10)

where e is a small positive parameter (0o�p1). According to the MMS method [2], one defines a number of
time scales Tn ¼ �nt, n ¼ 0,1,2,y, where T0 ¼ t is the fast time scale on which the main oscillatory behavior of
the response occurs, and Tn, nX1 are slow time scales on which the amplitude and phase modulations, caused
by the nonlinearity, damping and resonance, take place. Then upon expressing the time derivatives in terms of
the new time scales Tn become

d

dt
¼ D0 þ �D1 þ �

2D2 þ . . . , (11)

d2

dt2
¼ D2

0 þ 2�D0D1 þ �
2ð2D0D2 þD2

1Þ þ . . . , (12)

where

Dn ¼
q

qTn

.

Also, the assumed series expansion for the dependent variables, take the form

uðt; �Þ ¼ u0ðT0;T1;T2; . . .Þ þ �u1ðT0;T1;T2; . . .Þ þ �
2u2ðT0;T1;T2; . . .Þ þOð�3Þ. (13)
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As mentioned above, the interest here is in the subharmonic resonance of order 1/3, and accordingly a
detuning parameter s, which measure the nearness of O to 3, such that

O2 ¼ 9þ �s. (14)

Substituting Eqs. (11)–(14) into Eq. (10) and equating the equal powers for e, one obtains
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0u1. ð17Þ

The solution of Eq. (15), i.e. the homogeneous and particular solution can be expressed as

u0 ¼ AðT1;T2Þe
1=3OT0 þ Le�iOT0 þ cc; (18)

where cc stands for complex conjugate, A ¼ ða=2Þeif and L ¼ �ð9P=16O2Þ. Upon substituting Eq. (18) into
Eq. (16) and eliminating the secular terms, one obtains
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Substituting A ¼ ða=2Þeib, Ā ¼ ða=2Þe�ib, D1A ¼ ða0=2Þeib þ iða=2Þb0eib into Eq. (19), and separating real
and imaginary parts, one obtains
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Equating a0 and b0 to zero, Eqs. (20) and (21) take the form
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2
La2 3�2 �
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3
�1O2
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sinð3bÞ, (22)
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3
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La cosð3bÞ. (23)

The steady state subharmonic response of order 1/3 can be obtained from Eqs. (22) and (23) by making use
of the trigonometric identity sin2ð3bÞ þ cos2ð3bÞ ¼ 1.

Results obtained for the subharmonic response from using HB and MMS were similar and are of the same
qualitative nature.
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2.3. Stability analysis

The stability of the subharmonic response can be examined by introducing a small perturbation to solutions
obtained from Eqs. (20) and (21), [21], i.e. by substituting

a ¼ a0 þ a1, (24)

b ¼ b0 þ b1, (25)

where a0 and b0 represent the steady state solution and a1 and b1 represent the perturbation. Substituting (24)
and (25) into (20) and (21) and keeping linear terms, one obtains

a01 ¼
9

4
Lð3�2 �

2

3
�1O2Þa0 sinb0 �

dO
2

� 	
a1 þ

9

4
Lð3�2 �

2

3
�1O2

� �
1

a2
0 cos 3b0Þb1, (26)

b01 ¼ 2 9�2 �
10

3
�1O2

� �
L2a0

� �
a1 �

9L
4

3�2 �
2

3
�1O2

� �
a0 sin 3b0

� �
b1, (27)

sin(3b0) and cos(3b0) can be obtained from steady state solution, i.e. (22) and (23). Substituting a1 ¼ a10e
lT1

and b1 ¼ b10e
lT1 into Eqs. (26) and (27).

For nontrivial solution the determinant of the coefficient matrix for a10 and b10 must vanish, which leads to
a quadratic equation for the eigen value l. The stability of the subharmonic solution can be examined by
evaluating the sign of the real part of the eigen value, unstable (positive real part) and stable (negative real
part), [4,5].

3. Results and discussion

Examples of the 1/3 subharmonic response of Eq. (1), for a selected range of system parameters, were
obtained using the analytical solutions in Section 2 as well as those obtained numerically are displayed in
Figs. 1–7. The numerical solutions were obtained by integrating Eq. (1) up to t ¼ 5000 s and time step of
0.005 s, using the fourth-order Runge–Kutta method. The FFT analysis, was carried out using the last 2048
points of time history of the displacement using MATLAB, taking into consideration the effect of integration
step size on accuracy.

It is to be noted that in some cases a total integration time of less than t ¼ 5000 s and an integration step of
0.1 was sufficient for the response to reach the steady state, especially at frequencies away from the
subharmonic resonance region.

In Fig. 1, results were obtained for a purely hardening case, e1 ¼ 0 and e2 ¼ 0.1, and verified numerically in
a zone near a point on the frequency axis at which 1/3 subharmonic resonance emanates.

These results show that the subharmonic response: (a) consist of two non-terminating branches, (b) the
resonance starts at a frequency of O ¼ 3.05, (c) the upper branch is stable while the lower branch is unstable,
(d) the HBM method and the MMS produce identical results, (e) numerical solutions show good agreement
with the analytical results up to OE4.8 after which numerical solution show a jump down to the primary
resonance response, i.e. subharmonic response of order 1/3 were obtained only in the range 3:05oOo4:8.

Fig. 2 shows typical results obtained for the case were the nonlinearity in the oscillator is purely softening.
These results show that: (a) the subharmonic resonance consists of two branches which, unlike the hardening
case, bent to the left rather than to the right, (b) the upper branch is stable and the lower branch is unstable, (c)
the subharmonic resonance emanates at a frequency slightly less than 3, (d) the HBM and the MMS produce
the same, nearly identical, results which show good agreement with those obtained numerically, (e) the
numerical solutions show that the subharmonic resonance is possible to a frequency down to about OE2,
below which the response of the oscillator becomes dominated by the primary resonance response.

Fig. 3 displays the results obtained for the case where the oscillator is dominated by the hardening
nonlinearity but with a small softening nonlinearity.

These results show: (a) the HB solution consist of two branches which tend to coalesce as the frequency is
increased and re-separate again as the frequency is increased further, (b) the MMS solution is composed of
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Fig. 5. Fast Fourier transform FFT of the response for P ¼ 2, d ¼ 0, e1 ¼ 1, e2 ¼ 3: (a) O ¼ 2.97, (b) O ¼ 3.1.
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two parts, each consist of two branches, separated by a small island where no subharmonic resonance response
exists, (c) unlike the cases where the oscillator is purely hardening or softening type, the stability analysis show
that only the lower branch of the lower part is stable, and (d) the numerical solutions were only possible for
points on the lower branch on the lower part for both the HB and MMS solutions.

Numerical simulations have shown that, for the hardening type oscillator, the chaotic behavior may occur
just before entering the region at which the subharmonic resonance curve intersects with the primary response
curve. Fig. 4 shows that the zone of chaotic behavior on the frequency response curve occurs in the shaded
region, i.e. 2:9oOo3:25, just before the subharmonic resonance emanates, which agrees with the findings
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presented in Ref. [13]. And this was detected with the aid of the simulation tools; phase planes, Poincare maps
and Lyaponuv exponents (li) and fractal dimension (df).

Other results but not shown, indicated that, for a softening type oscillator, the chaos may occur at lower
values of O by decreasing the excitation amplitude P and for high values of O but slightly less than 3 when
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Table 1

Summary of some numerical simulation for different values of; Excitation amplitude P, Damping d and initial conditions u(0) and _uð0Þ at
O ¼ 3.1

P d u(0) _uð0Þ Behavior

2 0 0 0 3T

10 0.01 0 0 3T

10 0.01 2 0 3T

10 0.01 5 0 3T

10 0.01 10 0 Chaos

12 0.01 0 0 3T

13 0.01 0 0 7T

14 0.01 0 0 7T

15 0.01 0 0 PD

15 0.01 5 2 3T

10 0.005 0 0 3T

15 0.005 0 0 PD

20 0.005 0 0 Chaos

A.A. Al-Qaisia, M.N. Hamdan / Journal of Sound and Vibration 305 (2007) 772–782 781
increasing the excitation level. To summarize, for the same oscillator shown in Fig. 2, the chaos was observed
at O ¼ 1 and for P ¼ 1 and at O ¼ 2.8 with excitation level of P ¼ 5.

To study the behavior of the nonlinear oscillator inside the region of intersection of the subharmonic and
the primary resonance for P ¼ 2, d ¼ 0, e1 ¼ 1, e2 ¼ 3, results were obtained and the FFT were presented in
Fig. 5 for some frequencies inside the range 2:95oOo3:15. As one can see, the subharmonic resonance can
occur inside the frequency range when the primary resonance immerges in the subharmonic instability
boundary.

It was found that by increasing the frequency, the behavior of the nonlinear oscillator is periodic for a
frequency 2:95oOo2:97, as shown in Fig. 5a, and the subharmonic resonance of order 1/3 ‘‘3 T attractor’’
was first observed at a frequency equals to O ¼ 2.98. Numerical investigations have shown that the
subharmonic resonance can occur inside the frequency range 2:98oOo3:10, as shown in Figs. 5b.

Other results, but not shown, have indicated that increasing the excitation level P and the initial conditions
uð0Þ; _uð0Þmay change the response of the system from period (1, 3 or 7 T) to a chaotic response through period
doublings, depending on the amount of damping d present in the system. Those results are summarized in
Table 1.

From the results obtained, it was noticed that the response of the nonlinear oscillator might culminate in
chaos through period doublings when increasing the excitation level (P) and the amount of damping d, as
shown in Fig. 6 for the case; P ¼ 20, d ¼ 0.005, e1 ¼ 1 and e2 ¼ 3.

Finally, in Fig. 7, results were obtained and for a case at which the nonlinearities are of the same order. The
primary response resembles a linear behavior and the results obtained from the numerical simulations
indicated that the response is periodic for all values of O and the excitation level P.

4. Conclusions

The results presented in this paper have shown that the subharmonic response of order 1/3 appear, for given
system parameters; e1, e2, d provided that the excitation level P is above certain critical value and the initial
conditions are within the basin of attraction, whenever O is in the range of 3o0.

From the results obtained, the subharmonic resonance is a bifurcation phenomenon, and it might culminate
in chaos, depending on the critical values of the system parameters.

In light of the results presented the following conclusions can be drawn:
�
 Increasing the value of e1, i.e. increasing the softening effect of the nonlinearity, will decrease the critical
value of O at which the subharmonic resonance may initiated. This means that the subharmonic resonance
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may starts at value; less than 3 if the value of e1 is greater than e2 and value greater than 3 if the value of e1 is
less than e2.

�
 For a hardening type nonlinear oscillator, the behavior may culminate to chaos through period doublings,

just before entering the subharmonic region depending on the critical values of the excitation level, damping
and the initial conditions.

�
 For a softening type nonlinear oscillator, decreasing the excitation level P tends to lower the excitation

frequency at which chaotic motion may appear.

�
 When the oscillator is dominated by the hardening nonlinearity but with a small softening nonlineraity, the

HB solution consist of two branches which tend to coalesce and the MMS solution is composed of two
parts, each consist of two branches, separated by a small island where no subharmonic resonance response
exists.

�
 When the values of e1 and e2 are of the same order, the frequency response resembles that of a linear

oscillator and chaotic behavior was not observed even for relatively high excitation levels.
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